

Mode of Operation

2000 2068a

Pump element Fig. 2-1 Piston

¹⁾ NOTE

2 -4 -Check valve 3 -Return spring

Pump elements with piston diameter C 7 must be used for supplying of chisel paste. The design and the mode of operation are the same as those of the pump elements with piston diameter K 7.

Pump elements with fixed lubricant output

- The electric motor drives the eccentric 1 (fig. 2-2 and 2-3).
- During the lubricating time:
 - piston 2 sucks in lubricant from the reservoir (fig. 2-2).
 - piston 2 dispenses the lubricant to the connected lubrication points via the metering device (fig. 2-3).
- The following designs are available:
 - Piston diameter, K55 mm Lubricant output approx. 2 ccm/min
 - Lubricant output approx. 2.8 ccm/min
 - Lubricant output approx. 4 ccm/min
 - Piston diameter, B77 mm Lubricant output approx. 2 ccm/min

2)

Ρ 13 f 36

suitable for lubricants containing silicone

Mode of Operation, continuation

Pump elements with fixed lubricant output, continuation

Pump element B7 with bypass check valve

Fig. 2-4 Pump element B7

- Pump element B7 suits especially applications in contaminated environments as the supplied lubricant is passing through a bypass bore 2 (fig. 2-5) on the check valve 1.
- The output is 2 cm³/min.

Fig. 2-5 Sectional diagram - pump element B7

- 1 Check valve
- 2 Bypass
- 3 Pump piston
- 4 Return spring

Check valve

Fig. 3-1 Hydraulic diagram of the pump

- The check valve:
- closes the pressure line during suction stroke.
- prevents the lubricant from flowing back to the housing or reservoir.

Arrangement of the pump elements

Fig. 3-2 Arrangement of the pump elements

- If several pump elements are to be installed, the installation arrangement shown in fig. 3-2 must be adhered to.
- If there is only one pump element, it can be installed in any position. Standard position is no. 3.
- If there are two elements, install one in position 3 and the other in position 1.

- Reservoir with stirring paddle
- 2 Pump 3 - Check

Subject to modifications

1

4

R

Ρ

- Check valve, spring-loaded
- Pressure relief valve
 Return line
- Pressure line

Pag 14 f 36

Mode of Operation, continuation

Pump element with adjustable lubricant output

Fig. 4-1 Adjustable pumpelement

Adjustment of the lubricant output

- The mode of operation (suction and supply phase) is the same as that of the pump elements with an invariable lubricant output.
- The lubricant outputs are adjustable from 0.04 to 0.18ccm/stroke, or 0.7 to 3 ccm/min.
- The pump elements are factory-adjusted to the maximum lubricant output; the adjusting dimensions "S" should be 29 ± 0.1 mm (see fig. 4-2).

Fig. 4-2 Sectional view: adjustable element

- 1 Adjusting spindle SW 16 (width over flats)
- 2 counternut SW 24
- 3 pump element body SW 27
- 4 gasket
- 6 control piston
- 7 delivery piston Smax - max. adjusting measure of the adjusting spindle

IMPORTANT

Before adjusting the output volume exactly, determine the maximum adjusting measure "S_{max}".

5 - pump cylinder

Determine deviation for maximum adjusting measure "Smax": Loosen counternut 2 (fig. 4-2).

- Unscrew adjusting spindle 1 out of pump element body 3.
- 0 Screw counternut 2 completely onto the adjusting spindle 1.
- Determine and note down maximum adjusting measure 0 "S_{max}". Deviation = $S_{max} - 29$ mm

600 1a02

IMPORTANT

The determined deviation must be considered for each adjusting measure:

max. adj. measure "S_{max}", e.g. 29.5 mm - deviation + 0.5 mm required output volume, e.g. 0.14 ccm/stroke - adjusting measure "S" (fig. 4-3) 28 mm $S_{0.14} = S + deviation$

Adj. measure " $S_{0.14}$ " 28 + 0,5 = 28,5 mm

Fig. 4-3 Lubrication output diagram

- A Lubrication output cm³/min
- B Lubrication output cm³/stroke
- S Adjusting measure in mm (without deviation)

Pressure relief valve ...

Adjustment of the lubrication output:

- Remove pressure relief valve from pump element KR.
- Determine adjusting measure S (including deviation) for the required output volume by means of the output diagram (fig. 4-3).
- Loosen counter nut 3 (fig. 4-2) while holding in position pump element body 2.
- Adapt adjusting measure S at the adjusting spindle 1.
 - Increase "S" increase output
 - Reduce "S" reduce output
- Fix pump element body 3 and secure position of adjusting spindle with counternut 2.

Fig. 5-1 Pressure relief valve

6442b05

... without grease return

Each pump element must be secured with a pressure relief valve.

The pressure relief valve is not contained in the scope of supply of the pump.

- The pressure relief valve
 - limits the pressure build-up in the system.

IMPORTANT

- opens, if the specific overpressure is reached.
- is to be selected according to the requirements to the lubrication plant (see "Parts Catalogue", different opening pressures: 200, 270, 350 bar).
- If lubricant is leaking at the pressure relief valve, this indicates that the system or a lubricating point is malfunctioning.
- Despite existing fault monitoring devices a regular visual and function control must be carried out on the lubrication system.

Mode of Operation, continuation

Fig. 5-2 Pressure relief valve with grease return

T-P203Fp-020d08 B-P603M-030e08

10.032618

... with grease return (optional)

- If the system is blocked, grease will leak from the pressure relief valve. This grease quantity is returned to the reservoir.
- In the case of a blockage in the system, the grease pushes out the red pin at the pressure relief valve, thus indicating that there is a fault.
- Afterwards the fault has been removed the pin has to be pressed back to its starting position.

Return Line Connection

Fig. 6-1 Return Line Connection

The lubricant quantities which cannot be dispensed by the metering device must be returned to the pump via the return line connection.

Control Units

Fig. 7-1 Printed circuit board integrated in the housing

6001a02

NOTE

The present User Manual describes the pump without control unit Information concerning the design and operation of the individual control units (V10-V13, M08-M23, H) can be found in the respective User Manual.

If the pump is to be equipped with a control unit, it is possible to use an integrated printed circuit board or an external control unit.

00 00 26 16