

DEUTSCH

Ist dieses PDF noch aktuell? Klicken Sie hier für den Update-Check!

Fragen zur Produktauslegung?
Wir beraten Sie gerne -> www.centa.info/contac

SYSTEM	FUNKTION/BAUFORMEN
Auf einen Blick Seite 03	Funktionen Seite 06
	Einschaltdrehzahlen Seite 06
	Höchstdrehzahlen Seite 06
	Bauformen Seite 07

Produktauswahl: Welche Kupplung für welchen Zweck? Seite 09

Produktauslegung: Welche Kupplung hat welche Eigenschaften? Seite 11

TECHNISCHE DATEN

SERVICE
Erläuterung der
Seite APP-1
Kontakt
Seite APP-6

CENTASTART-V AUF EINEN BLICK

Fliehkraftschaltkupplung mit hoher Elastizität. Kombination aus einem hochelastischen, rein auf Druck beanspruchten Gummielement und mehreren über Zugfedern verbundenen Fliehkörpern mit Reibbelag. Hochbelastbare Konstruktion mit sehr präziser Schaltdrehzahl. Erlaubt eine vollständige Trennung des Kraftschlusses sowie weiches Einkuppeln und eine schlupffreie Leistungsübertragung nach Überschreiten der Schaltdrehzahl. Stöße im Antrieb werden durch die Elastizität des Gummielementes weich aufgenommen.

In vielen Standardbauformen mit Schwungradanschlüssen nach SAE, als gelagerte Variante und mit Versatzwelle - sowie in Sonderbauformen verfügbar. Auch für nicht genormte Schwungräder erhältlich.

Eigenschaften

Hochelastisch Temperaturbeständig Verlagerungsfähig

Einsatzgebiete

Drehmomentbereich 1 bis 8 kNm
Elastisches Material NR
Temperaturbereich -45° bis +80°C

CENTASTART-V SYSTEM

DREHELASTIZITÄT

Die Gummielemente sind in verschiedenen Shorehärten lieferbar. Damit lässt sich die Drehelastizität der Kupplungen überaus variabel auf den jeweiligen Einsatzfall abstimmen. Drehschwingungen und Stöße werden zuverlässig gedämpft.

MODULARITÄT

Die Konstruktion ist in breiten Leistungsstufen verfügbar, sehr abwandlungsfähig und kann einfach und kostengünstig den verschiedensten Einbausituationen angepasst werden.

Die Kupplung ist kompakt, kurzbauend, glattflächig, unfallsicher und wartungsarm.

LEBENSDAUER

Die Reibbeläge sind aus verschleißfestem und temperaturbeständigem Material, welches sich durch Konstanz im Reibwert und geringste Verschleißbeträge auszeichnet. Dies ermöglicht harten Betriebseinsatz, und eine lange Lebensdauer ohne Veränderung der Eigenschaften.

VERSATZALISGI FICH

Die Bauformen VFS und VFF der Baureihe gleichen Verlagerungen gemäß den Grundeigenschaften des verwendten CENTFLEX-A Elementes aus. Sie sind ideal für Einsatzfälle mit Versatzaufgaben.

TÄTI IAUC

Wenn es drauf ankommt, ist Qualität unbezahlbar. CENTA sorgt mit einem gelebten Qualitätsmanagement für Produkte, die auch härtesten Anforderungen standhalten. CENTA Kupplungssysteme sind mehr als die Summe aller Teile.

Die Vision von CENTA sind intelligente Produkte, die in konstruktiver und in qualitativer Hinsicht höchsten Anforderungen genügen.

FUNKTIONSPRINZIP BAUFORMEN

CENTASTART-V VIER FUNKTIONEN

Die CENTASTART-Kupplung vereint die folgenden Funktionen mehrerer Kupplungen, daher ersetzt sie oft mehrere, aufwendige andere Elemente (z.B. Schaltkupplung und deren Betätigungsorgane, Gehäuse, Vorgelegewelle, Lagerungen und elastische Kupplungen).

- 1) Anlaufkupplung, die dem Motor vollkommen lastfreien Anlauf, sowie lastfreien Leerlauf von beliebiger Dauer ermöglicht. Völlige Trennung des Kraftflusses unterhalb der Einschaltdrehzahl, oberhalb der Einschaltdrehzahl jedoch steiler Anstieg des Drehmoments, daher schmaler Übergangsbereich, schlupffreie Übertragung im Betriebsdrehzahlbereich.
- 2) Automatische, drehzahlgesteuerte Schaltkupplung: Durch Veränderung der Motordrehzahl kann die Kupplung (ohne sonstige Betätigungsorgane) einbzw. ausgekuppelt werden. Durch diese automatische, drehzahlbetätigte Funktion werden Bedienungsfehler verhindert, das Einkuppeln geschieht ohne

Stöße, weich und schonend für Motor und Maschinen.

- 3) Hochelastische Kupplung, stoß- und schwingungsdämpfend, allseitig verlagerungsfähig. Die integrierte hochelastische CENTAFLEX-A-Kupplung unterstützt die Wirkung des Reib-Übertragungselementes, ist Drehschwingungsdämpfer und, je nach Bauart, auch Ausgleichselement für Verlagerungen und Fluchtungsfehler jeder Art.
- 4) Überhol-Kupplung (Freilauf). Bei bestimmten Antrieben mit zwei Motoren (z.B. Notstromaggregate, Pumpenaggregate, Traglufthallengebläse usw.), wo die Abtriebsseite der Kupplung mit einem E-Motor verbunden ist und ständig läuft, während der Verbrennungsmotor steht, wirkt die CENTASTART-Kupplung wie eine Überholkupplung, sie ist nicht eingeschaltet. Erst beim Anlauf des Verbrennungsmotors kuppelt sie ein und stellt so die Verbindung zwischen diesem und dem übrigen Antrieb her.

CENTASTART-V FUNKTIONSPRINZIP

DREHMOMENT

Das übertragbare Drehmoment der CENTASTART-Kupplung wird von zwei verschiedenen Faktoren bestimmt.

- a) Das übertragbare Drehmoment infolge der Fliehkraft ist im Prinzip eine Parabel, die durch die Rückhaltekraft der Federn verschoben wird. Das Drehmoment steigt mit der zweiten Potenz der Drehzahl, abzüglich einem Betrag für die Rückhaltekraft.
- b) Das übertragbare Drehmoment der elastischen Gummielemente ist nicht drehzahlabhängig, sondern bei ansteigender Drehzahl gleichbleibend. Dieses zulässige Drehmoment muss immer grösser sein als das Motormoment.

Auf jeden Fall sollte die Kupplungsdrehzahl mindestens 20% unter der niedrigsten Arbeitsdrehzahl des Antriebs liegen, da andernfalls die Gefahr besteht, dass die Kupplung ständig rutscht und infolgedessen

verbrennt. Die Kennlinie bei uns angefordert werden. Neben der Auslegung der Kupplung in Bezug auf das Drehmoment muss unbedingt von uns noch eine Überprüfung der Drehschwingungslage erfolgen. Dazu benötigen wir folgende Angaben:

- Motortype, Zylinderzahl und Anordnung (Reihe oder V, V-Winkel)
- Leerlaufdrehzahl und Betriebsdrehzahlbereich
- Trägheitsmomente der angetriebenen Aggregate
- Art der angetriebenen Aggregate (z.B. Pumpe, Generator usw.)

EINSCHALTDREHZAHLEN

Die bevorzugten Einschaltdrehzahlen werden so gewählt, dass sie mit hinreichendem Abstand oberhalb der Leerlaufdrehzahl der Dieselmotoren liegen, denen die entsprechenden Kupplungsgrößen üblicherweise zugeordnet werden. Abweichende Einschaltdrehzahlen, sowohl höhere als auch niedrigere, sind möglich, sollten jedoch nur in zwingenden Fällen vorgesehen werden.

HÖCHSTDREHZAHLEN

Die zulässigen Höchstdrehzahlen werden durch den Werkstoff der Abtriebsglocke bestimmt. Daher muss dieser Wert von uns geprüft und der entsprechende Werkstoff für die Glocke vorgesehen werden.

CENTASTART-V BAUFORMEN

Bauform VFS Größe 900-6000

Antriebsseite Flansch, Abtriebsseite Welle

Antriebsseite

Antriebsseitig wird die Kupplung vorwiegend über einen Antriebsflansch mit dem Schwungrad des Motors verbunden. Dieser Flansch kann so variiert werden, dass er zu den verschiedensten Motortypen passt; die Anschlussmaße entsprechen der SAE-Norm J620, F & S Kupplungen oder sind nicht genormten Schwungrädern angepasst.

Abtriebsseite

Die Abtriebsglocke wird unmittelbar auf das Wellenende des anzutreibenden Aggregates montiert, z.B. Kreiselpumpe, Gebläse, E-Motor, Verteilergetriebe, usw. Bei dieser Bauform kommen alle elastischen Eigenschaften der integrierten CENTAFLEX-A-Kupplung zum Tragen, nämlich die Fähigkeit Schwingungen zu dämpfen und Verlagerungen und Fluchtungsfehler jeglicher Art auszugleichen.

Bauform VFF Größe 900-2500

Antriebsseite Flansch, Abtriebsseite Kardanwelle

- Antriebsseite wie bei Bauform VFS
- Abtriebsseite

Die Abtriebsglocke ist hierbei in der Kupplung komplett in reichlich dimensionierten und abgedichteten Kugellagern gelagert. Daher kann an die Abtriebsglocke direkt eine Kardanwelle angeflanscht werden. Die Anschlussmaße der Glocke können in weiten Grenzen dem Kardanwellenflansch angepasst werden. Bei dieser Bauform dient die elastische CENTAFLEX-A-Kupplung in erster Linie als Drehschwingungsdämpfer und zur Verlagerung von Resonanzstellen. Die Kardanwelle wird hierdurch geschont, die Lebensdauer erheblich verbessert und die Geräuschentwicklung reduziert. Der Ablenkwinkel der Antriebswelle sollte 10° möglichst nicht überschreiten.

Bauform VFG Größe 900-2500

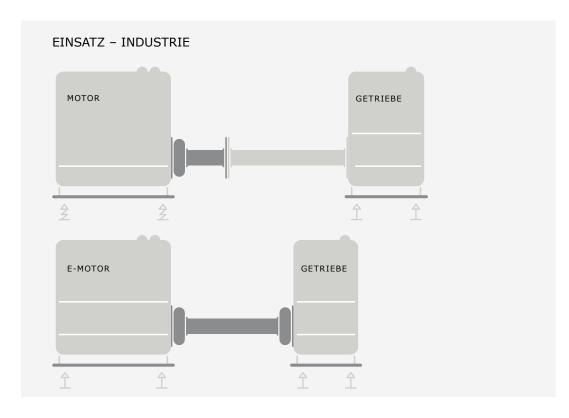
Antriebsseite Flansch, Abtriebsseite hochelastische CENTAFLEX-Antriebswelle

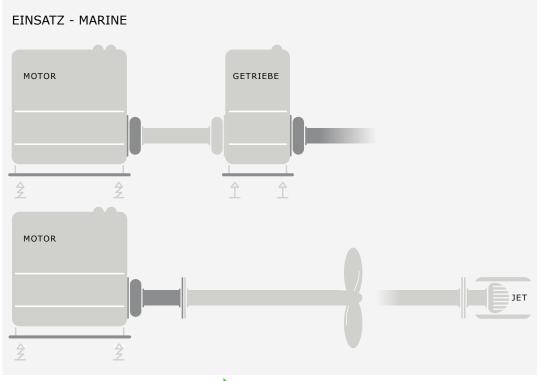
- Antriebsseite wie bei Bauform VFS
- Abtriebsseite

Die Abtriebglocke ist komplett gelagert, daran angeschraubt wird ein weiteres CENTAFLEX-Element, welches mit einem zweiten CENTAFLEX-Element eine hochelastische CENTAFLEX-Antriebswelle bildet. Diese Bauweise ist extrem drehweich, wartungsfrei und geräuscharm. Länge des Zwischenrohrs beliebig. Zulässige Abwinkelung ca. 2°.

Sonderbauformen zum Ausgleich von beträchtlichen Axialverschiebungen sind möglich.

Bauform VSS Größe 900-6000


Antriebs- und Abtriebsseite auf Wellen angeordnet


Diese Bauform ähnelt den Bauformen VFS, VFF und VFG. Die Antriebsnabe der Kupplung wird jedoch nicht über einen Flansch angetrieben, sondern direkt auf eine Welle montiert. Die Bauform VSS ist ohne Lagerung der Abtriebsglocke. Viele Sonderbauformen sind möglich. Diese abwandlungsfähige Konstruktion passen wir auf Wunsch gerne an Ihre besondere Einbausituation an.

EINSATZGEBIETE

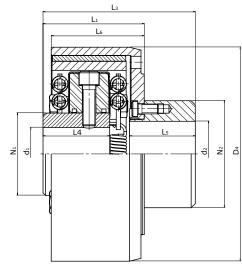
Welches Produkt für welchen Zweck?
Wir beraten Sie gerne → www.centa.info/contact

CENTASTART-V EINSATZGEBIETE

Welches Produkt für welchen Zweck?
Wir beraten Sie gerne → www.centa.info/contact

TECHNISCHE DATEN

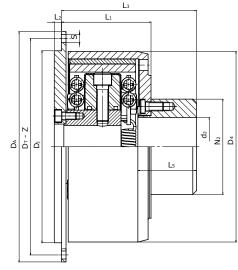
Fragen zur Produktauslegung?
Wir beraten Sie gerne → www.centa.info/contact



TECH	INISCHE DATE	:N	↓ GRÖßEN 80	- 6000								•
1	2	3	4	5	6	7	8	9	*	10**	12**	14**
Baugröße	Gummi- qualität	Nenndreh- moment	Maximal- drehmoment	Dauerwechsel- drehmoment	Zulässige Verlustleistung	Dynamische Drehsteifigkeit	relative Dämpfung	Schaltdrehzahl	Drehzahl	Zulässiger Axialversatz	Zulässiger Radialversatz	Zulässiger Winkelversatz
	[Shore A]	T _{KN} [kNm]	T _{ĸmax} [kNm]	T _{kw} [kNm]	P _{кv} [W]	C _{Tdyn} [kNm/rad]	Ψ	n _e [mi	n _{max} n ⁻¹]	ΔK_{a}	ΔK_{r}	ΔK _w [°]
80	50 60	0,1	0,28	0,04	25	0,9 1,5	0,9 1,5	1100	5800	1	0,5	1
180	50 60	0,2	0,56	0,08	40	2 3,4	2 3,4	850-1100	5000	1	0,5	1
400	50 60	0,5	0,20	0,20	80	4,8 7,8	4,8 7,8	950 1000	3800	1,5	0,5	1
600	50 60	0,7	2,10	0,30	90	12 19	12 19	820 850	3800	1,5	0,5	1
900	50 60	1,1	3,15	0,45	120	10,5 16	10,5 16	870-1000 830-960	3000	1,5	0,5	1
1400	50 60	1,7	4,90	0,70	150	26,5 40	26,5 40	850-920 900-1000	3000	1,5	1	1
2500	50 60	3,0	8,75	1,25	200	43 77	43 77	750-850 800-850	2650	2	1	1
4000	50 60	5,0	12,50	2,00	240	75 120	75 120	720-900	2500	2	1	1
6000	50 60	8,0	20,00	3,20	330	105 160	105 160	750-850	2300	2	1	1

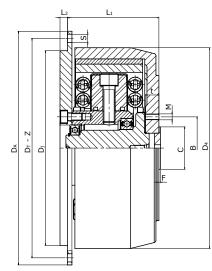
^{*} Werte für Einschaltdrehzahl und übertragbares Drehmoment auf Anfrage

^{**} nur für ungelagerte Ausführung VSS/VFS


CENTASTART-V BAUFORM VSS

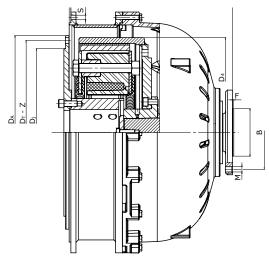
АВМЕ	SSUNGEN		↓ G	RÖßEN 80	- 6000												
Baugröße	Nenndreh-					Abmes	sungen							Flanschabr	nessungen		
	moment T _{kN} [kNm]	$d_{_1}$	d ₂	D ₄	L ₁	L ₃	L ₄	L ₅	L ₆	N ₁	N ₂	SAE	D _A	D _T	D _j	S	Z
												6,5	215,9	200,0	180	9	6x60°
80	0,1	38	40	178	81	98	52	40	69	60	65	7,5	241,3	222,3	200	9	8x45°
												8	263,5	244,5	220	11	6x60°
												7,5	241,3	222,3	200	9	8x45°
180	0,2	48	50	208	96	120	63	50	88	70	80	8	263,5	244,5	220	11	6x60°
												10	314,4	295,3	270	11	8x45°
400	0.5	c.E.	00	270	400	101	0.4	00	440	100	120	10	314,4	295,3	270	11	8x45°
400	0,5	65	80	270	122	184	81	80	113	100	120	11,5	352,4	333,4	310	11	8x45°
500	0.7	65	00	270	400	101	0.4	00	440	100	420	10	314,4	295,3	270	11	8x45°
600	0,7	65	80	270	122	184	81	80	113	100	120	11,5	352,4	333,4	310	11	8x45°
000	4.4	0.5	100	335	147	224	98	100	120	125	1.00	11,5	352,4	333,4	310	11	8x45°
900	1,1	85	100	335	147	224	98	100	130	125	160	14	466,7	438,2	405	13	8x45°
1.400	4 7	85	100	335	147	224	98	100	120	125	1.00	11,5	352,4	333,4	310	11	8x45°
1400	1,7	85	100	335	147	224	98	100	130	125	160	14	466,7	438,2	405	13	8x45°
2500	2.0	115	120	426	172	224	117	102	150	160	200	14	466,7	438,2	405	13	8x45°
2500	3,0	115	120	436	1/2	224	117	102	159	160	200	16	517,5	489,0	450	13	8x45°
												14	466,7	438,2	405	13	8x45°
4000	5,0	120	*	462	212	*	137	*	182	170	*	16	517,5	489,0	450	13	8x45°
												18	571,5	542,9	450	17	6x60°
6000	0.0	1.40	*	FC0	252.5	*	150	*	214	200	*	18	571,5	542,9	450	17	6x60°
6000	8,0	140	*	560	253,5	*	159	*	214	200		21	673,1	641,4	560	17	12x30°

^{*} auf Anfrage


CENTASTART-V BAUFORM VFS

АВМЕ	SSUNGEN		↓ GRÖß	EN 80 - 6000										
Baugröße	Nenndreh- moment				Abmessungen						Flanschabn	nessungen		
	T _{kN} [kNm]	d ₂	D ₄	L ₁	L ₂	L ₃	L ₅	N ₂	SAE	D _A	D _T	D _j	S	Z
									6,5	215,9	200,0	180	9	6x60°
80	0,1	40	178	81	5	98	40	65	7,5	241,3	222,3	200	9	8x45°
									8	263,5	244,5	220	11	6x60°
									7,5	241,3	222,3	200	9	8x45°
180	0,2	50	208	96	8	120	50	80	8	263,5	244,5	220	11	6x60°
									10	314,4	295,3	270	11	8x45°
400	0,5	80	270	122	10	184	80	120	10	314,4	295,3	270	11	8x45°
400	0,5	80	270	122	10	184	80	120	11,5	352,4	333,4	310	11	8x45°
600	0.7	00	270	122	10	184	80	120	10	314,4	295,3	270	11	8x45°
600	0,7	80	270	122	10	104	80	120	11,5	352,4	333,4	310	11	8x45°
900	1,1	100	335	147	12	224	100	160	11,5	352,4	333,4	310	11	8x45°
900	1,1	100	333	147	12	224	100	160	14	466,7	438,2	405	13	8x45°
1400	1,7	100	335	147	12	224	100	160	11,5	352,4	333,4	310	11	8x45°
1400	1,7	100	333	147	12	224	100	160	14	466,7	438,2	405	13	8x45°
2500	3,0	120	436	172	16	224	102	200	14	466,7	438,2	405	13	8x45°
2500	3,0	120	430	1/2	16	224	102	200	16	517,5	489,0	450	13	8x45°
									14	466,7	438,2	405	13	8x45°
4000	5,0	*	462	212	12	*	*	*	16	517,5	489,0	450	13	8x45°
									18	571,5	542,9	450	17	6x60°
6000	8.0	*	560	252 5	5	*	*	*	18	571,5	542,9	450	17	6x60°
6000	8,0	7	560	253,5	5	7	7	7	21	673,1	641,4	560	17	12x30°

^{*} auf Anfrage


CENTASTART-V BAUFORM VFF

АВМЕ	SSUNGEN		↓ GR	ÖßEN 80 –	6000											
Baugröße	Nenndreh- moment		Abmessunge	า			Flanschabr	messungen					Kardar	nwellen		
	T _{kN} [kNm]	D ₄	L ₁	L ₂	SAE	D _A	D _T	D _j	S	Z	Flansch- größe	В	C [f7]	F	М	Anzahl Gewinde
80	0,1	178	81	5	6,5 7,5 8	215,9 241,3 263,5	200,0 222,3 244,5	180 200 220	9 9 11	6x60° 8x45° 6x60°	58 65 75	47	30	1,2	M5	4x90°
180	0,2	208	96	8	7,5 8 10	241,3 263,5 314,4	222,3 244,5 295,3	200 220 270	9 11 11	8x45° 6x60° 8x45°	75 90 100	52	35	1,5	M6	4x90°
400	0,5	270	122	10	10 11,5	314,4 352,4	295,3 333,4	270 310	11 11	8x45° 8x45°	90 100 120	62	42	1,5	M6	6x60°
600	0,7	270	122	10	10 11,5	314,4 352,4	295,3 333,4	270 310	11 11	8x45° 8x45°	90 100 120	74,5	47	2	M8	4x90°
900	1,1	335	147	12	11,5 14	352,4 466,7	333,4 438,2	310 405	11 13	8x45° 8x45°	120 150 180	84	57	2	M8	6x60°
1400	1,7	335	147	12	11,5 14	352,4 466,7	333,4 438,2	310 405	11 13	8x45° 8x45°	120 150 180	101,5	75	2	M10	8x45°
2500	3,0	436	172	16	14 16	466,7 517,5	438,2 489,0	405 450	13 13	8x45° 8x45°	180 225	130	90	2,5	M12	8x45°
4000	5,0	462	212	12	14 16 18	466,7 517,5 571,5	438,2 489,0 542,9	405 450 450	13 13 17	8x45° 8x45° 6x60°	225 250 285	155,5	110	2,5	M14	8x45°
6000	8,0	560	253,5	5	18 21	571,5 673,1	542,9 641,4	450 560	17 17	6x60° 12x30°	285 315	196	140	3	M16	8x45°

CENTASTART-V BAUFORM VFF

MIT FLANSCHLAGERGEHÄUSE

АВМЕ	SSUNGEN		↓	GRÖßEN 8	30 – 6000										Ц	_ <u></u>		
Baugröße	Nenndreh- moment			А	bmessunge	n					Flanschab	messungen				Kardar	wellen	
	T _{KN} [kNm]	d ₃	D ₄	D ₅	L ₁	L ₂	L ₇	N ₃	SAE	D _A	D _T	D _j	S	Z	Flansch- größe	В	F	М
80	0,1	55	178	81	5	5	42	80	6,5 7,5 8	215,9 241,3 263,5	200,0 222,3 244,5	180 200 220	9 9 11	6x60° 8x45° 6x60°	58 65 75	47	1,2	M5
180	0,2	70	208	96	8	8	50	100	7,5 8 10	241,3 263,5 314,4	222,3 244,5 295,3	200 220 270	9 11 11	8x45° 6x60° 8x45°	75 90 100	52	1,5	M6
400	0,5	100	270	122	10	10	66	140	10 11,5	314,4 352,4	295,3 333,4	270 310	11 11	8x45° 8x45°	90 100 120	62	1,5	M6
600	0,7	100	270	122	10	10	66	140	10 11,5	314,4 352,4	295,3 333,4	270 310	11 11	8x45° 8x45°	90 100 120	74,5	2	M8
900	1,1	110	335	147	12	12	80	160	11,5 14	352,4 466,7	333,4 438,2	310 405	11 13	8x45° 8x45°	120 150 180	84	2	M8
1400	1,7	110	335	147	12	12	80	160	11,5 14	352,4 466,7	333,4 438,2	310 405	11 13	8x45° 8x45°	120 150 180	101,5	2	M10
2500	3,0	130	436	172	16	16	100	195	14 16	466,7 517,5	438,2 489,0	405 450	13 13	8x45° 8x45°	180 225	130	2,5	M12
4000	5,0	140	462	212	12	12	125	200	14 16 18	466,7 517,5 571,5	438,2 489,0 542,9	405 450 450	13 13 17	8x45° 8x45° 6x60°	225 250 285	155,5	2,5	M14
6000	8,0	180	560	253,5	5	5	170	280	18 21	571,5 673,1	542,9 641,4	450 560	17 17	6x60° 12x30°	285 315	196	3	M16

CENTASTART-V BAUFORM VFG

ABME	ABMESSUNGEN		↓ GRÖßI	EN 80 - 2500										
Baugröße	Nenndreh-				Abmessungen						Flanschabn	nessungen		
	moment T _{kN} [kNm]	d ₃	D ₄	D ₅	L _i	L ₂	L ₇	N ₃	SAE	D _A	D _T	D_{j}	S	Z
80	0,1	55	178	81	5	5	42	80	6,5 7,5 8	215,9 241,3 263,5	200,0 222,3 244,5	180 200 220	9 9 11	6x60° 8x45° 6x60°
180	0,2	70	208	96	8	8	50	100	7,5 8 10	241,3 263,5 314,4	222,3 244,5 295,3	200 220 270	9 11 11	8x45° 6x60° 8x45°
400	0,5	100	270	122	10	10	66	140	10 11,5	314,4 352,4	295,3 333,4	270 310	11 11	8x45° 8x45°
600	0,7	100	270	122	10	10	66	140	10 11,5	314,4 352,4	295,3 333,4	270 310	11 11	8x45° 8x45°
900	1,1	110	335	147	12	12	80	160	11,5 14	352,4 466,7	333,4 438,2	310 405	11 13	8x45° 8x45°
1400	1,7	110	335	147	12	12	80	160	11,5 14	352,4 466,7	333,4 438,2	310 405	11 13	8x45° 8x45°
2500	3,0	130	436	172	16	16	100	195	14 16	466,7 517,5	438,2 489,0	405 450	13 13	8x45° 8x45°

Maß L* bitte angeben

ERLÄUTERUNG DER TECHNISCHEN DATEN

Dieser Anhang zeigt alle Erläuterungen für technische Daten aller CENTA Produkte.

Für diesen Katalog sind die grün markierten Erläuterungen relevant:

1 Baugröße	Seite APP-2
2 Gummiqualität	Seite APP-2
3 Nenndrehmoment	Seite APP-2
4 Maximaldrehmoment	Seite APP-2
5 Dauerwechseldrehmoment	Seite APP-2
6 Zulässige Verlustleistung	Seite APP-2
7 Dynamische Drehsteifigkeit	Seite APP-3
8 Relative Dämpfung	Seite APP-3
9 Drehzahl	Seite APP-3
0 Zulässiger Axialversatz	Seite APP-3
1 Axialfedersteife	Seite APP-4
2 Zulässiger Radialversatz	Seite APP-4
3 Radialfedersteife	Seite APP-4
4 Zulässiger Winkelversatz	Seite APP-4
5 Winkelfedersteife	Seite APP-4

Sind diese technischen Erläuterungen noch aktuell? Klicken Sie hier für den Update-Check!

ERLÄUTERUNG DER TECHNISCHEN DATEN

Diese frei gewählte Zahl bezeichnet die Größe der Kupplung.

2 Gummiqualität Shore A

Diese Zahl gibt die nominelle Shorehärte eines Gummielementes an.

Die gemessene Shorehärte kann in vorgegebenen Grenzen hiervon abweichen.

Nenndrehmoment Tkn [kNm]

Mittleres Drehmoment, das im gesamten zulässigen Drehzahlbereich dauernd übertragen werden kann.

4		
Maximaldrehm	omen	t
[kNm]		
Dualanaanaant	4	

Drehmoment, das gelegentlich und kurzzeitig insgesamt bis zu 1.000-mal auftreten darf und die elastischen Elemente nicht wesentlich erwärmt.

Maximaler Drehmomentbe-

reich (peak-to-peak) zwi-

Zusätzlich dürfen folgende Maximal-drehmomente auftreten:

1,8xTkN	malem Drehmoment, z.B. bei Schaltvorgängen.
T _{Kmax1} = 1,5 xT _{KN}	Kurzzeitige Drehmomentspitze (z.B. bei Resonanzdurchfahrten). $\Delta T_{\text{Kmax}} \text{bzw.} T_{\text{Kmax}1} \text{dürfen} \\ 50.000\text{-mal} \text{wechselnd} \text{oder} \\ 100.000\text{-mal} \text{schwellend} \text{auftreten.}$
T _{Kmax2} = 4,5 x T _{KN}	Drehmoment, das in seltenen, abnormalen Betriebszuständen auftreten darf (z.B. bei Kurzschluss).

20 30 5 Dauerwechseldrehmoment

Amplitude der dauernd zulässigen, periodischen Drehmomentschwankungen bei einer maximalen Grundlast bis zu T_{KN} .

T_{KW} [kNm]

1,0

0.8

0.6

0,4

0,2

Die Frequenz der Amplitude hat keinen Einfluss auf das zulässige Dauerwechseldrehmoment. Ihr maßgeblicher Einfluss auf die Erwärmung der Kupplung wird bei der Berechnung der Verlustleistung berücksichtigt.

Betriebsdrehmoment T_{Bmax} [kNm]

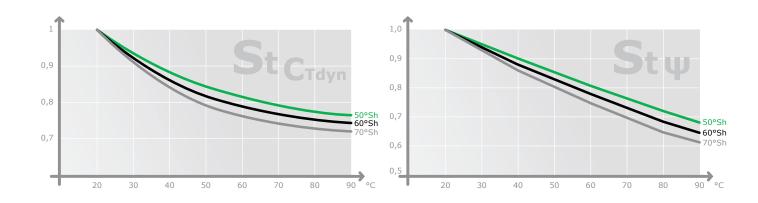
Das maximale Betriebsdrehmoment ergibt sich aus T_{KN} und T_{KW} .

6 Zulässige Verlustleistung Pĸv [kW] oder [W]

70

Verlustleistung entsteht im Gummielement bei der Dämpfung von Drehschwingungen und Verlagerungen.

Die zulässige Verlustleistung ist die maximale Wärme, die das Gummielement dauernd (d.h. ohne zeitliche Einschränkung) an die Umgebung abgeben kann, ohne dass dabei die zulässige Temperatur des Gummielements überschritten wird.


Die Angabe der zulässigen Verlustleistung bezieht sich auf eine Umgebungstemperatur von 30°C. Wird eine Kupplung bei einer höheren Umgebungstemperatur betrieben, ist bei der Berechnung der Temperaturfaktor Sterku zu berücksichtigen.

Sollte bei bestimmten Betriebszuständen (z.B. Zündaussetzern) eine höhere, als die dauernd zulässige Verlustleistung auftreten, kann die Kupplung dies kurzzeitig ertragen.

P_{KVZ} [kW]

Kennzeichnet einen individuellen praxisgerechten Richtwert für die Verlustleistung im Zündaussetzerbetrieb. Der Kennwert berücksichtigt die Angaben der Motorenhersteller in Bezug auf das Auftreten von Zündaussetzern, sowie bestehende Regelungen/Schutzeinrichtungen. Werte auf Anfrage.

ERLÄUTERUNG DER TECHNISCHEN DATEN

Dynamische Drehsteifigkeit C_{Tdyn} [kNm/rad]

Die dynamische Drehsteifigkeit ist das Verhältnis von Drehmoment zu Drehwinkel bei dynamischer Belastung.

Die Drehsteifigkeit kann in Abhängigkeit von Bauform und Werkstoff der Kupplung linear oder progressiv sein.

Bei Kupplungen mit linearer Drehsteifigkeit berücksichtigt der angegebene Wert folgende Bedingungen:

Vorlast: 50% von TkN
 Amplitude des Wechseldrehmoments: 25% von TkN
 Umgebungstemperatur: 20° C
 Prüffrequenz: 10 Hz

Bei Kupplungen mit progressiver Drehsteifigkeit ändert sich nur der Wert der Vorlast wie angegeben.

Die Toleranz der Drehsteifigkeit beträgt ±15%, wenn nicht anders angegeben.

Soll eine Drehsteifigkeit für andere Betriebsbedingungen ermittelt werden, so sind folgende Einflussgrößen zu berücksichtigen:

- Temperatur
 - Höhere Temperatur reduziert die Drehsteifigkeit.
 - Bei der Berechnung ist der Temperaturfaktor Stranger zu berücksichtigen.
- Frequenz der Schwingungen
 - Höhere Frequenz steigert die Drehsteifigkeit. Die dynamische Drehsteifigkeit ist erfahrungsgemäß ca. 30% höher als die statische. Hierfür liegen CENTA genaue Kennwerte vor.
- Amplitude des Wechselmomentes

Höhere Amplituden reduzieren die Drehsteifigkeit, geringe Amplituden ergeben daher eine höhere Drehsteifigkeit. Hierfür liegen CENTA genaue Kennwerte vor.

Relative Dämpfung

Die relative Dämpfung ist das Verhältnis der Dämpfungsarbeit zur elastischen Formänderungsarbeit während einer Schwingungsperiode. Je größer der Wert $[\Psi]$ ist, desto geringer ist die Erhöhung des Wechseldrehmoments in oder nahe der Resonanz.

Die Toleranz der relativen Dämpfung beträgt $\pm 20\%$, wenn nicht anders angegeben.

Bei höheren Temperaturen wird die relative Dämpfung reduziert.

Bei der Berechnung ist der Temperaturfaktor $S_{t\Psi}$ zu berücksichtigen.

Die Schwingungsamplitude und die Frequenz beeinflussen die relative Dämpfung nur unwesentlich.

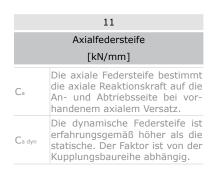
Drehzahl [min⁻¹]

Maximale Drehzahl des Kupplungselements, die gelegentlich und kurzzeitig auftreten darf (z.B. bei Überdrehzahl).

Aufgrund der Eigenschaften der Anbauteile kann es erforderlich sein, die maximale Drehzahl zu reduzieren (z.B. Außendurchmesser oder Material von Bremsscheiben).

Die dauernd zulässige Drehzahl von hochelastischen Kupplungselementen beträgt üblicherweise 90% hiervon.

10 Zulässiger Axialversatz [mm]

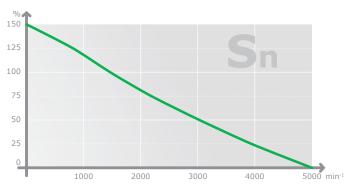

Dauernd zulässiger axialer Versatz der Kupplung.

Dieser ist die Summe aus Ausrichtversatz durch Einbau und statischem sowie dynamischem Versatz während des Betriebs.

Maximaler axialer Versatz der Kupplung, der gelegentlich und kurzzeitig auftreten darf (z.B. bei außergewöhnlichen Lastfällen).

ΔK_{a max} Das gleichzeitige Auftreten verschiedener Versatzarten wird in den technischen Unterlagen (Versatzdiagramme, Datenblätter, Montageanleitungen) behandelt.

ERLÄUTERUNG DER TECHNISCHEN DATEN



	12
	Zulässiger Radialversatz
	[mm]
ΔK_r	Dauernd zulässiger radialer Versatz der Kupplung. Dieser ist die Summe aus Ausrichtversatz durch Einbau und statischem sowie dynamischem Versatz während des Betriebs. Der dauernd zulässige radiale Versatz ist von der Betriebs drehzahl abhängig und muss gegebenenfalls angepasst werden (siehe baureihenabhängige Diagramme S _n).
$\Delta K_{r\;max}$	Maximaler radialer Versatz der Kupplung, der ohne Berücksichtigung der Betriebsdrehzahl gelegentlich und kurzzeitig auftreten darf (z.B. bei außergewöhnlichen Lastfällen). Das gleichzeitige Auftreten verschiedener Versatzarten wird

ter, Montageanleitungen) be-

handelt.

13	14
Radialfedersteife	Zulässiger Winkelversatz
[kN/mm]	[≯°]
Die radiale Federsteife bestimmt die radiale Reaktionskraft auf die An- und Abtriebsseite bei vorhandenem radialem Versatz. Die dynamische Federsteife ist erfahrungsgemäß höher als die statische. Der Faktor ist von der Kupplungsbaureihe abhängig.	Dauernd zulässiger winkelige Versatz der Kupplung. Dieser ist die Summe aus Aus richtversatz durch Einbau unstatischem sowie dynamischer Versatz während des Betriebs. Der dauernd zulässige winkelige Versatz ist von der Betriebs drehzahl abhängig und mus gegebenenfalls angepasst wer den (siehe baureihenabhängig Diagramme S _n).
	Maximaler winkeliger Versat der Kupplung, der gelegentlic und kurzzeitig auftreten dar (z.B. bei außergewöhnliche Lastfällen). ΔKwmax Das gleichzeitige Auftreten ver schiedener Versatzarten wir in den technischen Unterlage (Versatzdiagramme, Datenblät

		15		
atz		Winkelfedersteife		
		[kNm/°]		
nbau und amischem Betriebs.	Cw	Die winkelige Federsteife be- stimmt das Rückstellbiegemo- ment auf die An- und Abtriebs- seite bei vorhandenem winkeli- gem Versatz.		
	Cwdyn	Die dynamische Federsteife ist erfahrungsgemäß höher als die statische. Der Faktor ist von der Kupplungsbaureihe abhängig.		
Versatz elegentlich eten darf röhnlichen				

ter, Montageanleitungen) be-

handelt.

 $\ @$ 2017 by CENTA Antriebe Kirschey GmbH

Rev. CS-V-DE-05-17

1. Dieser Katalog ersetzt alle vorherigen Ausgaben, ältere Drucke verlieren ihre Gültigkeit.

Dieser Katalog zeigt nur das bei Drucklegung verfügbare Kupplungsprogramm, das jedoch laufend um weitere Baugrößen und Bauformen erweitert wird. Änderungen aufgrund technischen Fortschritts sind vorbehalten.

CENTA behält sich vor, die Maße, die technischen Daten und die Konstruktion zu ändern; alle Angaben dieses Kataloges sind unverbindlich. Fragen Sie bitte nach verbindlichen Einbauzeichnungen und Daten.

- 2. CENTA verweist auf die rechtlichen Vorschriften für die Unfallverhütung. Eventuell vorzunehmende Abdeckungen o.ä. gehören nicht zum Lieferumfang.
- 3. Warenzeichen

CENTA, das CENTA Logo, Centacone, CENTADISC, CENTAFIT, CENTAFLEX, CENTALINK, Centalock, Centaloc, CENTAMAX, CENTASTART, CENTAX und HYFLEX sind eingetragene Warenzeichen von CENTA Antriebe Kirschey GmbH in Deutschland und weiteren Ländern. Andere Produkt- und Firmennamen, die hier genannt werden, sind Warenzeichen der jeweiligen Unternehmen.

4. Verantwortung für Drehschwingungen

Die Verantwortung für die Kompatibilität von Drehschwingungen obliegt für die gesamte Antriebskette dem Systemverantwortlichen. Als Komponentenlieferant übernimmt CENTA keine Verantwortung für derartige Berechnungen. CENTA übernimmt keinerlei Haftung für durch Drehschwingungen verursachte Getriebegeräusche/-beschädigungen oder Schäden an der Kupplung.

CENTA empfiehlt, vor Inbetriebnahme des Motors eine Drehschwingungsanalyse für den gesamten Antriebsstrang durchzuführen. Eine Drehschwingungsanalyse kann grundsätzlich vom Motorenhersteller, einem beratenden Ingenieur oder einer Klassifikationsgesellschaft vorgenommen werden. CENTA kann aufgrund umfassender Erfahrungen mit Kupplungsanwendungen und Drehschwingungen bei solchen Berechnungen behilflich sein.

- 5. Das Urheberrecht an diesem technischen Dokument obliegt der CENTA Antriebe Kirschey GmbH.
- 6. Die Einbaumaße auf der Schwungradseite der Kupplungen basieren auf den Vorgaben des Bestellers. Die Verantwortung zur Einhaltung und Übereinstimmung liegt beim Hersteller der Antriebseinheit. CENTA übernimmt keine Haftung bei Störungen zwischen Kupplung und Schwungrad oder Getriebe sowie Schäden, die hieraus entstehen.
- Alle technischen Daten dieses Kataloges entsprechen dem metrischen SI-System. Alle Abmessungen sind in Millimeter angegeben. Alle Nabendurchmesser (N, N₁ und N₂) können abhängig von der geforderten Fertigbohrung abweichen. Alle Angaben für Massen (m), Massenträgheiten (J) und Schwerpunktabstände (S) beziehen sich auf die maximalen Bohrungsdurchmesser.

von elastischen Kupplungen für Bahn, Industrie, Marine, Energie. Weltweit.

CENTA ist der führende Hersteller

HAUPTSITZ

CENTA Antriebe Kirschey GmbH

Bergische Straße 7 42781 Haan/Germany

+49-2129-912-0 Phone

+49-2129-2790 Fax

info@centa.de www.centa.info WWW.CENTA.INFO/CONTACT

